ndarray 연산 방법
a = np.arange(1, 10)
b = np.arange(1, 10)
sum_ = a + b
print(f'{a}\n{b}\n{sum_}')
"""
[1 2 3 4 5 6 7 8 9]
[1 2 3 4 5 6 7 8 9]
[ 2 4 6 8 10 12 14 16 18]
"""
minus = a - b
print(f'{a}\n{b}\n{minus}')
"""
[1 2 3 4 5 6 7 8 9]
[1 2 3 4 5 6 7 8 9]
[0 0 0 0 0 0 0 0 0]
"""
squared = a ** 2
print(a, squared)
연산 메소드
arr1 = np.array([1,2,3])
arr2 = np.array([8,9,10])
np.add(arr1, arr2, out=arr1)
print(arr1)
print(arr2)
np.subtract(arr1, [8,9,10])
print(arr1)
print(arr2)
np.multiply(arr1, [1,2,3], out=arr1)
print(arr1)
np.sqrt(arr)
np.exp(arr)
np.log(arr)
np.log2(arr)
np.log10(arr)
np.sin(arr)
np.cos(arr)
np.modf(arr1)
통계 메소드
np.sum(x)
np.sum(x, axis=0)
np.sum(x, axis=1)
np.min(x)
np.max(x)
np.mean(x)
np.median(arr, axis=1, dtype = np.int16)
np.std(x)
np.var(arr)
np.cov(arr)
np.cov(arr1, arr2, dtype=np.float16)
np.corrcoef(arr[:,0], arr[:,1])
np.cumsum(arr, axis=0)
np.cumprod(arr, axis=1)
np.tril(arr)
np.triu(arr)
np.argmin(arr, axis=0)
np.argmax(arr, axis=0)
np.argmin(arr)
np.argmax(arr)
np.maximum(arr1, arr2)
np.minimum(arr1, arr2)
np.percentile(arr, 25)
np.percentile(arr, 50)
np.percentile(arr, 75)
np.percentile(arr, [25, 50, 75])
댓글