본문 바로가기

KT에이블스쿨21

KT AIVLE School 7주차 정리 - CNN's Layers 정리 강사님께서 연결주의 관점에서 설명해주시면서 함수로 묶어 하나의 레이어 처럼 인식하게 하면서 인간이 이해하기에 직관적인 느낌이 있었습니다. 그런데 이런 레이어들이 꽤 종류가 많아서 한번 정리를 해보고자 했습니다! Convolutional Layer 이미지 구조를 파괴하지 않으면서 데이터의 크기 축소 위치 정보를 보존 Feature Map 생성 Stride 꼭지점 쪽 정보를 반영이 덜되는 문제 발생 Feature Map을 훑는 간격 설정 model.add( Conv2D(filters=32, # feature map 의 수 이후 폭, 혹은 filter의 개수 [(이전 폭 - filtermap 폭) / 스트라이드 크기 + 1] -> 다음 레이어의 깊이 -> 필터의 커널의 개수 kernel_size=(3, 3),.. 2023. 3. 13.
KT AIVLE School 6주차 정리 - FI, PFI, SHAP FI (Feature Importance) 계산되는 방식이 2가지가 존재하기에 중요도 값의 단위를 확인할 필요가 있다. # 반복문을 돌면서 모델에 내장된 feature_importance_ 시각화 # results 는 딕셔너리 형태로 모델을 저장함 for key in results: if key in ['RL', 'KNNR', 'SVR']: continue tmp = pd.DataFrame({'feature_importance': results[key].feature_importances_, 'feature_names': list(x_train)}).sort_values('feature_importance', ascending=False)[:20] plt.figure(figsize=(16, 6)) sns.. 2023. 3. 10.
KT AIVLE School 6주차 정리 - 전처리 고급 누락된 값 분석 import missingno as msno ax = msno.matrix(df) plt.show() # 파일 저장 # from time import time, localtime # today = localtime(time()) # ax.get_figure().savefig(f'images/mlpr_{today.tm_mon}{today.tm_mday}.png') fig, ax = plt.subplots(figsize=(16, 6)) (1 - df.isna().mean()).abs().plot.bar(ax=ax) # 파일 저장 # from time import time, localtime # today = localtime(time()) # fig.savefig(f'images/mlpr_{.. 2023. 3. 7.
KT AIVLE School 5주차 정리 - Keras (Functional) 기본 Functional API 방식 keras.backend.clear_session() # 모델 저장된 메모리 초기화 """ Sequential과의 차이점 - 변수에 각 레이어의 결과를 담는다. - 모델 변수를 처음과 끝 레이어 변수를 넣어서 따로 선언한다. - Concatenate 등과 같이 히든레이어의 설정이 가능 """ il = keras.layers.Input(shape=(1,)) hi = keras.layers.Dense(512, activation='swish', name='hidden1')(il) hi = keras.layers.Dense(256, activation='swish', name='hidden2')(hi) hi = keras.layers.Dense(128, activation.. 2023. 3. 3.
KT AIVLE School 5주차 정리 - Keras (Sequential) 모듈 가져오기 import numpy as np import pandas as pd import tensorflow as tf from tensorflow import keras x, y 분리 target = '컬럼명' x = data.drop(target, axis=1) y = data.loc[:, target] 학습, 평가 데이터 분리 from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1) x_train.shape, x_test.shape, y_train.shape, y_test.shape 회귀 문제 - .. 2023. 2. 28.
KT AIVLE School 4주차 정리 - 지도 학습 지도학습 - 분류(Classification), 회귀(Regression) 찾고자 하는 변수(y, target, 종속변수, 결과, 목표)가 범주형인지 연속형인지에 따라서 분류, 회귀를 구분해서 사용한다. 필요한 용어 정리 모델 추정, 예측, 추론 변수(Variable), 필드(Field), 속성(Attribute), 특성(Feature) 개체(Instance), 관측치(Observed Value), 기록(Record), 경우(Case) 독립변수, 종속변수 학습용, 검증용, 평가용 데이터셋 과대적합(Overfitting), 과소적합(Underfitting) 오차 = 실제값 - 예측값 / 이탈도(Deviance) y: 실제값 / y-hat: 예측값 / y-bar: 평균값 회귀 평가 지표 (오차 줄이기) 오차.. 2023. 2. 21.